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NONAXIAL TEMPERATURE DISTRIBUTION IN AN INFINITELY LONG ORTHOTROPIC CYLINDER 
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1. Consider an infinitely long orthotropic homogeneous hollow cyl- 
inder of outside radius R + h/2 and internal radius R - h/g in a cy- 
lindrical coordinate system z, I~, r (the z-axis lies along the axis of 
the cylinder, while 15 and r are potar coordinates). 

Initially (t = 0), the cylinder has a constant temperature To, while 
the boundary conditions at the surface are independent of z and are 
given in the form [1] 

OT 
d~ ~ - - g { T  = FI' at r==R- -X/~h ,  

OT 
d~ ~ + g~'T = F~' at r = B + ~/~ h , 

where Fj = Fj'(~) are given functions of 8, while dj and gj (j = 1, 2) are 
positive constant coefficients (we role out the cases in which d, and gl 
or dz and g~ are zero simultaneously). 

The material is assumed to be orthotropic in thermophysical pro- 
perties, with the principal axes of the thermal conductivity coincident 
with the principal geometrical directions. 

The heat-conduction equation then takes the form 

0 [r OTI X~ O:T OT 
- Or \ 571  + r~ 0 ~  = P C ~  

where X, > 0 and k~ > 0 are the thermal conductivities along the r and 
8 axes, respectively, while p is density and co is specific heat. 

We convert to the dimensionless temperature ff ~- T/T ~ in which 
T ~ = T o if To # 0, while any fixed temperature T ~ > 0 may be taken 
if this is not so, and also to the dimensionless coordinate y =- r/R and 
to the dimensionless time r ~ t / t  0, in which t o = constant > 0. We 
also introduce the symbols 

h B=pco To 
- f f - - 2 6 ,  ~-~-Tt-~ ~ m 2, -~-s- = ~ ~ ,3A~---- T, 

R F / ( [ ~ ) / T ~  Rg'=_g~ ( / ' = i , 2 ) ,  1f •4 - -7 - •  = A1z, . 

/ X~ = An. 

The problem then reduces to integration of 

(1.1) 

subject to the initial condition 

'0~---~ ~ at " ~ 0 ,  

and to the boundary conditions 

(1.2) 

0~ 
dt ~ - y - - g l ~ = F ~  at y = y x ~ t - - 6 ,  

oo 

In all cases of practical interest, Ft(~o ) and Fz(~o ) satisfy the Di- 
richter conditions and can be expanded as Fourier series in the range 
0 <-- ~a _< 2IrAlz : 

a0(J ) co 
Fj (T) = - ~ -  + E a~ <i) cos (kA~q)) + 

co 

+ E bk(i)sin(kA~'~) ( i = t ' 2 ) '  
k=l  

2~A.xt 

o 
(1.3) 

We aLso represent if(y, ~o, r) as a trigonometric series 

03 
~(V, % ~) = 60(y, x) 

2 + ~ ~ ( y ,  ~)eos(kAn(p) + 

+ ~ ~ *  (y, ~)sin(kAzrtp). (1.4) 

The object of this paper is to determine the coefficients. 

2. The Laplace transform of a function in the plane of the complex 
variable p is 

oo 

0 (p) = I e-W ~ ('0 d'c, Re (p) > 0.  
0 

Converting to the transforms in the basic relations and using (1.2), 
we have: 

a) for the equation of heat conduction 

020 t 00 t 020 - -  m2t~*; (2.1) 
Oy"-" i + "~ -~g + y"-ff aq~--'g - -  m2pO = 

b) for the boundary conditions 

dx~---#O gxO =-~-Fr for y = yl = 1 - -  6,  

d~ ~-~+g00 ~O =--p--F~ for y = y~ = 1 + 6 ; (2.2) 

c) for the series expansion of the transform of the desired function 

~o 

o (~, ~1 = ~ + y ,  % (y) r (k^.  ~) + 

oo 

+ 2 0~* (y) sin (kA21 q~). (2.3) 

We substitute (1.3) and (2.3) into (2.1) and (2.2) to get 

d20o .{_ t dOo 
~ W - m~pOo = - -  2m'~~ 

with the boundary conditions 

(2.4) 

d00 a0 (1) 
d t - ~ - - - g l O o =  p for y = y ~ = t - - 6 ,  

dOo a0 (2) 
d , ~ - ~ + g 2 0 0 =  p for y = y ~ = t + 6  (2.5) 

for | and also the homogeneous differential equation 

( d2( ) t d (  ) m~p-{- ?-~ ( ) = 0 ,  
dy z Jr-y dy (2.6) 

with the boundary conditions 

dO k a-~ (1) dOk* b~ (1) 
dl ~ - - g l O ~ =  P , dl-~y----glO~ * =  =7- 

for y ~ ! l l  ~ I ---6, 
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dO t ak(U) dOk* b~ (2) 
d~ - ~ y  + g # ~ =  P , &-h-~-v + g ~ % *  = - - ~  

for y = y 2 : t  §  (2.7) 

f o r ~ a n d ~ ( k =  1,2 . . . .  ). 
In (2.6) we have used the symbol v z =- k z k z / k l  > 0, in which v, 

in general,  may be any real number (integer or fraction). 
The solutions to (2.4 7 and (2.6) are represented by Bessel functions 

of ordem zero and v, respectively.  
3. The general  sotution to (2.4 7 can be put as [2] 

oo = A d o  (~m V'.~v) + ~o~ro (~m Ypv) + 2."  / p 

in which J'o( ) and No( ) are, respectively, Bessel and Neumannfunc-  
tions of zero order [3] .  

We deduce Ao and B o from (2.5) and set 

(y~ t + 6  % 
= ( .17 

to get 

2#* ao if,) 
o0 (v) = - 7 -  + ~ '  

~o (~) / yl ----- {(ao(1)+ 2gi ~}~ [g~yi No (8~)--d2~ N1 (e~)]+ 

+ (ao z - -2g~5  ~ [giy~No(~) -bdi~Ni (~)]} .1.o (%) - -  

- -  {(ao ('~) - - 2  g2'O '~ [ga yx Jo (~) + dl~fll (~)1 + 

+ (ao r + 2gt~*) [g~y~Jo (8~) - -  d~9"r (e~)] }No (X), 

ao (~) ---~ [glylZo (~) + dx~Z~ (~)]X 

x[-- g~yt No (~) 4- &~ N~ (sD] + [#~Vx#o (8~) -- 

- -d~J1  (8~)] [g~y~No (~) + d~NI(~)] .  

To O0 we apply the inverse Laplace transformation 

,~-' ico 

'~o (X) ~ . ~  e TM Oo (p) dp 
y--zeo 

(3.2) 

(3.37 

to find &0, i . e . ,  one of the desired functions of the series of (1.4). 
The integrand in (3.3) is a single-valued function of p with a pole 

at p = 0 and with simple poles at p = P~n ~ -~Z0n/mZyZ, where ~ 0 n  
denotes the roots (all real and simple [1] ) of 

ao (~) ~--- 0. (3.47 

If 

gld2 @ g~e dl + g~g~r In 8 ::~ O, (3.5) 

then the point p : 0 will be a pole of first order. We substitute (3.2) 
into (3.3) and apply the standard formula to calculate the residues [2] 
so that we finally obtain 

c J0 ~ q / y ~ ) +  Oo(y,'r)=2 ~'~247 S [ on ( on' 

-1. DonNO (~ony/y,)] exp ( _  
T 

mz!r ~ ] I " 

Jo = [8(ao ~) ~ 2gz "0"~ [d~ -- gg/a (In y ~ l n  ~1171 

- -  (a,~ (x) -b-2ga0 ~ [d.~-- g28~11 (In ,r - -  ln8 - - In  na)] 1 • 

• § § th o)] . 

Con = ~ {(ao r -[- 2g~0 ~ [g~y~No (S~on) - -  d..,r (8~on) ] § 
f~0n 

§ (ao (2) - -  2g~@ ~ [gaylNo (~On) @ dl~on N1 (~on)]}, 

Don = - -  ~ {(ao (~) - -  2ga~ ~ [gxylJo (~On) + dl~on J~ (~on)] + 

§ (ao (I) @ 2gl ~}~ [guYiJo (8~o~) - -  d2~onJ~ (8~on)]} , 

�9 ~ d & ( U  

Aon ~ Zp ~ P=Pon 

= ~on {[--  dl~orJO (~on) 4- gIYlJx (~on)] [geylNo (8~on) - -  

- -  d2~onNx (8~On)l -t- [ - -  da~onJVo (~on) + glylN1 (~on)] X 

• [--  g~YrJo (eE.on) + d2~onJx (8~on)] - -  s [dz~onJO (8~on) -]- 

~- g2YlJ1 (8~on)] [glYlNo (~On) @ dl~on N1 (~On)] -~ 

4- e [d2~o~NO (e~o~) + g~y~lV~ (s~o~)l X 

• [glylJo (~on) 4- dl~onJ1 (~or~)l}. (3.6) 

Here and subsequently we use the limiting relations 

l i r a  y~ (~z) __ 

( 0 for v - - n - - o ~ > O  
= { 2 ~ - ~ l x ~ r ( n + t ) / r ( v + t  ) for v - - n - - o = 0  

[ oo for v - - n - - c o < 0  

0 
l i r a  x~ (x) 2n-v ~v r (n) / r (v) 
~ o  ~v ( ~ )  - [ 

for v - - n  + ~ 0 > 0  

for v - - n + o = 0  

for v - -  n -~- o ~ 0  

which are true for integer and fractional values of v ~ O, n ~ 0, to ~> 
>-0.  

If (3.57 is not obeyed (which is possible only if gl and g2 are zero 
simultaneously when the restrictions of the previous section on df and 
ggc are applied), the point p = 0 is a second-order pole. Then in (3.6) 
we should assume that 

ao (2) die - -  ao (1) d.z . ao  ( l )  Y l  

]o - dld.sm.~yt (e~ __ 1) "r -t- ~ ) X  

8 2 
•247  Ins)] '+ 

- 8 2  ~ '  

4a2 (a - -  1) k 
(3.7) 

The linear function of t ime in (3.7) may lead to an unbounded in-  
crease in the absolute value of the temperature  of the hollow cylinder. 
This case can occur if there is no heat  transfer at either boundary (gl = 
= gz = 0) or if the amount  of heat  introduced via one bounding surface 
is not equal to the amount  lost through the other (a0 (s) dl 8 ~ a0 (1) d27. 

4. As ~)k and @~ (k = t ,  2 . . . .  7 are defined by (2.67 and satisfy 
(2.7), while differing only in the values of the coefficients a ~ )  and 
b0s ), we consider[j7 ~ ~k(y'j7 r) .  In the final expression for this, we 
replace the a ~  and b(~ and thus get the expression for ~k(y, r) .  

The features of the Bessel functions due to the integer or fractional 
nature of v [4] allow us to put the solution to (2.6) for the present case 
in terms of the symbols of (3.17 as 

o~ ..... t~Jv (z) i- iSkNv (z),  (4.17 

in which Jr( ) and Nv( ) are Bessel and Neumann functions [3] of or- 
der v. 

ff v + 1 is a natural number,  we have either an isotropic cylinder 
(v = k) or the particular case of orthotropy where A~l = kz/)q is the 

square of a natural number.  
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We deduce A k and B k from (2.7) and substitute these into (4.1) to 
get  

O~ (~) 
0 ~  = pA~ (~) ' 

ak (~)lua = {a (1) [(d~v + g~eyx) N~ (~4) --  s~deN~+l (~:E.)] - -  

- -  a~)e [(dxv --grgl) N~ (~) - -  danNy+ l (~)]} d~ (X) + 

+ {a(~)g [(dlv - -  g~Yr) J~ (~) - -  ~dld~+ 1 (4)] - -  

- -  a(~ 1) [(dzv -t- g~eY~)Jv (~) -- e~dJ~+r (s~)]) N~ (Z) , 

A k (~) : [ ( d l v  - -  glgl) 2v (~) - -  ~dlJv-~.l (~)] X 

X [(d~v -t- g~SD#x) N v (e~) - -  s~d~N~+ 1 (e~)] - -  

- -  [ ( d l V  - -  gxy~) N (~) - -  ~d~N~+ 1 ( 4 ) ]  X 

X [(dzv + g~eyl) Yv (e~) - -  a~d2J,~+l (8~)] . (4.2) 

Inverse transformation from ~k gives us ~k(Y, r) .  
In this case, the integrand is a single-valued function of p with 

poles at p = 0 and p = Pkn -= gkn2/mZY~ ~, in which ~gkn denotes the 
roots of Ak(g) = 0. if 

Vyl (edlg~ -~- d~ga) @ 1 - -  e ~ (4.3) 
d~d~v'~ if- glg'~eY le i + s ~ ' 

the pole at p = 0 will be simple, since 

l~ + l~ 
l i r a  (pOe) = ],~, /~ = y l  ~ : #  cr , 
p~0  

I i :  [a~t) ,B--I (g2SVl - -  vd~) + a(~)S (glvlVdl)] (viva)", 

la = (vdl  - -  gayl)(g2syx - -  vde) s -v -F (giy l  @ vdr)(gzsyl  + vd~) ~v. 

tn this case, (4.3) is always obeyed, since e > 1 and v > 0, white the 
conditions dj > 0 and gj > 0 have been given in section 1. Note that 
condition (3.5) may be obtained by passing to the l imit  in (4.3). 

We substitute (4.2) into the inverse transformation and use the sub- 
traction theorem to get, for the case of simple roots gkn, 

~(,~, ~)= I~ + ~ [C~,]~, (~,yl:s~) + 
n = l  

( -  ~ n ~  

co 

~ (Y, ~) = in* + .~  [C;~J~ (~;~yly~) + 
lv~-i 

~2 
+ D*~nN ~ (~kny/yi)] exp ( - -  r v) (4.4) 

\ m'~yi '-' ] '  

where the constants Ckn and Dkn ( k  = 1 ,  2 . . . .  ) are defined by 

C~, = 2'7~ Sa(]) [--d:s~::aN.,+r (e~:~n) + 
A~ n t ;,. 

= [(dlv e - -  glylv --  dl~n) d,~ (~kn) -I- gfJl~knJv+l (~'n)] X 

X [(d2v + g2syr) N v (e~kn) - -  d2s~a.nN~+l (S~kn)] q- 

+ [(d~v ~- - -  g~ytv - -  d ~ n )  N~ (~k~) + g~y~4~N~+t (5~;n)] X 

+ [ ( d : ~  + g~*g~ - -  d ~ e ~ )  o L ( ~ ) - - g ~ y : ~ J ~ . ~  ( e ~ ) ]  X 

•  di~ + giYi) Nv (~in) + dl~,nN'~+i (4hn)] + 

�9 "J-[(d~.v ~ + g ~ s y l v -  d28~5~n)N,~ (e~kn) --g~yls~;nNv+l (S4kn)]X 

x I ( d : - -  g~y~) :~ ( ~ ) - -  d~J~+~  ( ~ ) 1 ,  

while ~ ,  C~.., 1~ .  axe derived, respectively, from ~ ,  CI~ . Dkn by 
replacing the~a~)"'b~y b(~! 

We substitute (3.6) and (4.4) into (1.4) to get  ~(y,  9, r) as 

0o 00 

~--0. ~ [ ( ~ y  l y~) + 

- ~,?,:~ 
+ D~nN v (~ny / yl)] exp m--~y~- j cos ('~q~) + 

co co 

�9 C *J ' 
k = l  - i l~ l  

"-P Dk*nNv (~nY I Yl)l exp - -  4~n* [ sin ( ~ ) .  (4.5) 
m~yi "~ J 

From (4.5) we readily get  the steady-state temperature distribution 
as 

(v, ~, ~ )  = ~~ + /~ cos (v~) + ~ , / ~ *  sin (v~). 
n=O k = l  

From (4.5) we also get  as a special case the solution for axiaIly 
symmetr ic  boundary conditions at the surfaces y = Yl and y = Yz �9 
Here it is sufficient to take the term k = 0 in (4.5). Then we have 

co 

#(Y, * ) = ~ ~  ~ ,  [ConJo(~ony ly~) + 
~Z=l 

"> Don No (4on Y / Yx)] exp m--y~p ,  

which agrees with the known solution [1]. 
$. As solutinn (4.5) to (1.1) is obtained formally by t e rm-by- te rm 

differentiation (twice with respect to y and twice with respect to ~o) of 
the series in (1.4), we need to demom~ate  uniform convergence of 
the following series in the region Yz >- Y - yz, 2~r -> ~o >_ 0, r > 0: 

oo O~un _ ~ O~un 
S ~ , ~ = o E V ,  S '~= ~J_~ ~ 0~ - ~ '  

~ 02Vk n cw c~ 02~)kn 
s,=_ Z , s , -  E E o : ,  (5.1) 

t,=0 n = l  k=0 n = l  

D k , ~  : ~ ,:r~ ~ [ - -  d : - e  , , J ~ , . 1  ( ~ )  + 
At, n 

@ (dlv - -  gxy ) d,~ (~t,'n)] + a~ 'l) [d~e~'~n'l~ ~1 (eS~, n) - -  

- -  ( d ~ v  i- g~syl) J ~  ( s 4 ~ . , ) l } ,  

, ~ d [ a k  if,)] 
A~n = Zp ~ P = Pkn = 

% ----/k cos (v~), (5.2) 

v~n ~ [C~. Jv (4nn Y / Yl) -!- D ~  (5~,., Y / Yr)] X 

X exp  m 2 y l ~  COS Ca;q?). (5.:3) 

From (5.2) we get 

~ ;  0aUk = ~ %, (ak(l) jl]k(1) + aff2} /],//fc2)), (5 .4 )  

~'~a O,q- t'=l"o 
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Mi~O-) = y--~- I s -  ("+~) l-  (1 - -  @)  ( Y )  '~-~ - -  

- , +  (, + ( Y+"I \ Y l  J 
(5.5) 

Mk(~> __ t ( Y l  v-~ - y ,~  [q+ (~-~),~,,  - 

- t 3-) J oos(vr (5.6) 

gly~ - -  _, l+ ~ = g~eyi , . q+ = ~ ~ a~, - - V i i :  a~, Q = p+l + --  p-l-e -2~', 

k o = l + Z ( ~ / ~ ) ,  

in which E( . . . )  denotes the integer part of ( . . . ) .  We have v > 1 for all 
k > k0. Then it is readily shown that 

I M # ' I  < < '  l Mk(2) l< c~ 

C ' - -  
3 (d~ + gzsyx) s s 3 (all @ glYl) 8 ~ 
d~d2y~ (S e -  t)  ' c" -- d~dzy~ (s ~ - -  t)" 

Then the majorant  series of (5.4) will be 

" ( I  %<' I ~ + l ~ �9 
~ = k  o 

Now ai~) and ai2) are the Fourier coefficients of the given bound- 
ary functions F1 and F z . If these periodic boundary functions are con-  
tinuous, together with their derivatives up to order s (s > 2), it is 
readily seen that the majorants of (5.7) converge, and hence that the 
series of (5.4) converges uniformly. 

The most unfavorable case as regards uniform convergence in (5.4) 
occurs when Fl and F s are not continuous, although they satisfy the 
Dirichlet conditions. Then we can only say that the a ~t) and a (k z ) for 

large k wiU be infinitely smal l  quantities of order not less than l /k ;  
but this is insufficient for convergence of the majorants of (5.7). If 
this approximation is impossible, we are forced to accept  uniform 
convergence of (5.4) only within the region yz > y > y~. 

Consider the region aa >- y -> a~, where az <Yz, a l  >y~. 
Let v > 1 denote the value of v that for all u > v* provides s imul-  

taneously 

(a~ /y~)" -~<~ "-s ,  (y~/a~)v+s<~-' ( s >  t) .  

Then we may  show that 

1 M~ (~) I < c'~-', I Mk (2) I ~.~ c"v'-s (k > ko). 

This is sufficient for convergence of the majorants of (5.7), and 
hence for uniform convergence of (5.4), within the region Ys > Y > Yi. 

If in (5.4) we use the following in place of (5.5) and (5.6), 

,,, r . . . .  i x . . +  ( ,1 YI  

Ma(~ ) Y2 [ + { y V t Y~ V1 
= -  f f  L ~ t T ~ )  - ~-~q- t - k - )  ] ~o~ (~m), 

we get  series Sa of (5.1), and the proof of uniform convergence for 
this in no way differs from the above proof for S~. 

Consider the double series S s of (5.1). We set 

" ' Y Z  - -  V Y l  

-{- [ d2ezr~+l (g~Rn) - -  ~ Jv (e~kn) l X 

[ ( v2__ v y~e __ I) IV (~,kny / y~)@. y ~ n  N~+l (~kny/yx)]} ' X ~ y~ 
k n  

vq- 
Mk(~ ) _ 28yl~knA {[dllVv+x (~kn)"~- ~kn N~ (~n) t  X 

v~-- ~ . ) / ~l) + 

Y~ J 1 

II ) 1} 

The result is 

. ~ - -  2 . f  

OZvkn (ak(t)Mk(1) + %(2) Mk(2>) exp ~ "  cos (vtp). 
Oy 2 ,n2yl~ 

As u increases without l imit,  the roots ~kn of Ak(g ) = 0 increase at 
leas t  as clv, with cr > 0 [5] ; also, using the limiting relations 

lira I ]/ '~'Jv (z)l < I/2 n > lira [ V'xN~ (x)] 

i t  may  be shown that 

lira ] M~ (r) [ ~< 8d~w (t + s c l )  (1 + c12), 

8dlsgx . .  
lira [ Mk (~) l ~< ~ tl -% cl) (1 -}- c?), 

k ~ c o  

, (0M(t) + i. e . ,  as k, oincreases without Limit, the coefficients ~ k k 
+ a!. 2) M~)  of Sa are not  merely hounded but also tend to zero at 

x% 
least as 1/k.  Then it is obvious that i t  is sufficient to demonstrate 
,convergence of the majorants 

c o  

in order to demonstrate uniform convergence of S 3. 
Here we should note that the roots gkn of Ak(g ) = 0 increase at least 

as c(k + n), with c > 0 [5] ,  as k or n increases without l imit.  
Uniform convergence of the double series S 4 may  be demonstrated 

similarly.  
The above proofs of uniform convergence for the series of (5. t )  ap-  

ply also to the series ~ derived from S i by replacing ~k, Ckn, Dkn, 
cos(v~O), respectively, by 

/k*, Ckn, D~:, sin (vtp). 

This completes the proof of uniform convergence for the series in 

(4.5). 
After this paper had been accepted, Cinell i 's  paper [6] came  to my 

notice,  in which the  finite Hankel transform with respect to the spa- 
t ia l  coordinates is used to consider a problem analogous to the one 
solved here via the Laplace integral  transform with respect to the t ime  

coordinate. 
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