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NONAXIAL TEMPERATURE DISTRIBUTION IN AN INFINITELY LONG ORTHOTROPIC CYLINDER
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1. Consider an infinitely long orthotropic homogeneous hollow cyl-
inder of outside radius R + h/2 and internal radius R — h/2 in a cy-
lindrical coordinate system z, B, r (the z-axis lies along the axis of
the cylinder, while B and r are polar coordinates).

Initially (t = 0), the cylinder has 2 constant temperature Ty, while
the boundary conditions at the surface are independent of z and are
given in the form [1]

oT
d S —&T=Fa r=R—-1h,

ar
ds W—f—gz’T"—“Fgl at r=R 4 13h,

where F{ = Fj(B) are given functions of B, while dj and gj (j = 1,2) are
positive constant coefficients (we rule out the cases in which d; and g}
or d, and g; are zero simultaneously}.

The material is assumed to be orthotropic in thermophysical pro-
perties, with the principal axes of the thermal conductivity coincident
with the principal geometrical directions.

The heat-conduction equation then takes the form

Moo 0T Ao 82T aT
5 (r5r) T OE =P g
where Ay >0 and A, >0 are the thermal conductivities along the r and
B axes, respectively, while p is density and ¢, is specific heat,

We convert to the dimensionless temperature & = T/T°, in which
T° = Ty if Tp # 0, while any fixed temperature T° > 0 may be taken
if this is not so, and also to the dimensionless coordinate y= r/R and
to the dimensionless time T = t/t,, in which t, = constant >0, We
also introduce the symbols

3 R2peg Ty S
£ =26, Ty = m2, e = 9°, BAr=g¢,

Va/A: = As,

Vie/Rhy =An,

RE (BT =F;(¢), Rg/=g; (1=1,2),

The problem then reduces to integration of

20 108 1 o

G Ty ay T e Mo =0 @b
subject to the initial condition
=4 a t=0, (1.2)

and to the boundary conditions

%
dy 5—y———grﬁ=F1 at y=y1=1—6,

%
dzaq——{-gz'ﬂ:l"z at y=y2~=1+438.

In all cases of practical interest, Fi(¢) and F,(¢) satisfy the Di-~
richlet conditions and can be expanded as Fourier series in the range
0= ¢ < 9TAp:

0w
Fi@) =5+ 3} 2P cos (kAng) +
k=1

o0
+ D) 6P sin(kAng)  (F=1,2),
k=1
2:11'&1:
5 F () cos (kAn9) de,

¢

; Az
ak(n LY
T

A 27!{\1:
b == S F (@) sin (kAu @) do (7 =1,2). (1.3)
¢

We also represent &(y, ¢, T) as a trigonometric series

®(y, 9, T) =‘Mg’_ﬂ_ + 2 B, (v, 1) cos (kAn@) +
k=1

+ D) 8 (v, Dsin(kAn @). (1.4)
k=1

The object of this paper is to determine the coefficients.
2. The Laplace transform of a function in the plane of the complex
variable p is
(o]
o =70 mar,
o

Re (p)> 0.

Converting to the transforms in the basic relations and using (1.2),
we have:
a) for the equation of heat conduction

920 1980 1 828
a Ty oy Ty g p0 = — s @H
b) for the boundary conditions

08

Fy
d: @‘—gle="};‘ for y=y1=1-—38,

hn

28 F
ds ;3-y“+g28=-—2—

» for y=ys=1-6; (2.2)

c) for the series expansion of the transform of the desired function

8 (v, q))=9°—2(—~”) + D\ 8y (y) cos (kAs @) +
k=1

+ >} 8,* (v)sin (kAn 9). (2.3)
k=1

We substitute (1.3) and (2.3) into (2,1) and (2.2) to get

3] 1 dB,
Ty_zo-i— ;W—mzpeo=—2m2'5°, (2.4)

with the boundary conditions

a8, ag®
dl‘E}—-gjeo: OP for y=y=1-3,
EL:) a,®
dz—j’+gzeo= ‘; for y=ye =145 (2.5)

for @, and also the homogeneous differential equation

@), 1d0) v
Ty e eE)o=e e
with the boundary conditions
BL) a,® de, * 5,
E3 i3 Iy .3
T N "t e

for y=y1 =1 —35,
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do, ak@) o, * by, %
dy dy + 32 Pl p s da~5— dy + gz = T
for y=y2=148 (2.7

for@kand@)k(k—lZ ).

In (2.6) we have used l:he symbol vt =k Az/Ay >0, in which v,
in general, may be any real number (integer or fraction).

The solutions to (2.4) and (2.6) are represented by Bessel functions
of orders zero and v, respectively,

3. The general solution to (2.4) can be put as [2]

89 = AoJo (im V;y) -+ BoNo (im V;y) =+ 2v° /p
in which Jy( ) and Ny( ) are, respectively, Bessel and Neumannfunc-

tions of zero order [3].
We deduce A, and B, from (2.5) and set

imyy Vet imy. Vp=set, imyVp=x

y2 146 Y
(./_1— 1——5_8>1 — E—?'/'l—) (3.1)
to get
280 | Qo(E)
S ="t oK@

Qo (8) / 1 = {(a't + 2g10°) [g2y1 No (e8) —— dof N1 (e5)1+
+ (a0? —2g59°) [g191No(E) +diEN1 (B)1} Jo (1) —
— ((ae® 2 g50°) [g1 91 Jo (B) + dibJ1 ()] +
+ (a0 + 2619°) [gayrTo (eE) — dabJy (e8)] 3Vo (%),
Ao (B) = [awyrJo (§) + &ibJy (E)IX
X{— g1 No (e8) + dok N1 (eE)] + lgayr/o (eB) —
—d28J1 (e8)] Lg1yaNo (B) + diEN(E)]. (3.2)

To ®, we apply the inverse Laplace transformation

¥+-tco
1
'ﬁ‘o(T):m S e'? B (p)dp (3.3)

¥—ioo

to find 94, i.e., one of the desired functions of the series of (1.4).

The integrand in (3.3) is a single-valued function of p with a pole
at p = 0 and with simple poles at p = pyp = —§Zgn/m2yf, where +£on
denotes the roots (all real and simple [1]) of

Ay (8) = 0. (3.4)
if

g1dz + goe di + g1gefyr In e+ 0, (3.5)

then the point p = 0 will be a pole of first order. We substitute (3.2)
into (3.3) and apply the standard formula to calculate the residues [2]
so that we finally obtain

8o, =2 {0 +fo k- S (Colo (ot 1+

n=1

2
4 Dy No (Eynr/)] exp (_ ﬂ‘—f)} .

my
fo= [e(an(“’ —2g.0°)[d; - gua (In y—In )} —
— (@ -22,8°) {dy— gogir (Iny — Ine —In .u])ﬂ X

-1
X|:2 (g1d2 -~ gadie - g1g2811 10 8)] '

W 4 2:8°) [ No (e5g,) — deEo, V1 (8Eo,)] +

+ (30® — 22:9°) [g1aNo (Egyy) -+ B1EgnlVa (Eg)1}

Doy = — 7:: (@ — 26,8%) [gaTo (Bop) + diEons (om)] -

+ (@™ - 2g19°) [gaya o (BEqy) — defintn (€Eg, )1} »

‘o dAo (E) _
0 = P TUp |pmpg,

A

= g {l—d1E g0 (Egp) -+ 19171 (By)] [gatn Vo (5,,) —
— o€, N1 (€8g,)] + [— daE g, No (Byy,) + @191 V1 (Eg,)] X
X [— gaynfo (e€qy,) + debonT1 (EEg,)] — & [d2Ey,Jo (8E,) +
+ 211 (8E,)] 81910 (Ep) + iV (Bop)] -
+ & [da€ g, No (2Ey,) + gatn V1 (284p)] X

X [g11do (Egy) + dabgnd1 (Bgn)13 . (3.6)

Here and subsequently we use the limiting relations

“”"’x In (Z)
0 for v—n—0>0
={2"" W T (@n41)/T(v+1) for v—n-—0=0
oo for ve—n—-w<0
( 0 for v—n+0>0
lim””" @) _ oW (n)/T(v) for v—ndtwo=0
x>0 V(P’z)

oo for v—n+o0<0

which are true for integer and fractional valuesof v= 0, n2 0, w =
= 0.

If (3.5) is not obeyed (which is possible only if g, and g, are zero
simultaneously when the restrictions of the previous section on df and
gf'are applied), the point p = 0 is a second-order pole. Then in (3.6)
we should assume that

N 2o dye — a'V d a0 1
fo = Gagmpn @ —1) T ig @ =0~

e2
X[1+252(1—1ny1+1ny—~82—__7 lne)]—l—
(2)€J &2 i
,W‘Ml—)[_sz—}—ZO—Llnyl——ln‘/{— lns)l- 3.7

The linear function of time in (3.7) may lead to an unbounded in-
crease in the absolute value of the temperature of the hollow cylinder.
This case can occur if there is no heat transfer at either boundary (g; =
= g, = 0) or if the amount of heat introduced via one bounding surface
is not equal to the amount lost through the other (ao(z) dy &g = ao(l) dy).

4. As®y and ©f (k = 1,2, ...) are defined by (2.6) and satisfy
(2.7). while differing only in the values of the coefficients ag) and
bg), we consider only $y(y, 7). In the final expression for this, we
replace the aﬁ) and b{l) and thus get the expression for 3k(y, 7).

The features of the Bessel functions due to the integer or fractional
nature of v [4] allow us to put the solution to (2.6) for the present case
in terms of the symbols of (3.1) as

@k o= "!k']v (X) i BkNv ()C)v (4.3)

in which J,( ) and Ny( ) are Bessel and Neumann functions [3] of or-
der v.

If v + 1 isa natural number, we have either an isotropic cylinder
(v = k) or the particular case of orthotropy where A3 = Ay/A is the
square of a natural number.
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We deduce Ay and By from (2.7) and substitute these into (4.1) to
get

9% (®)
01 pAk(E)

’

Qi (B)yr = {afV [(dev + gsey1) N, (sE) — 8EdaNN, , (85)] —
—aPe [(dy — ) N, (8) — BN, (A}, (1) +
+ (&P [(dv — ) T, () — Edud , 5 (B)] —
— o [(dv + gaeya)T, (88) — 88dat,, GEN} NV, ()
A () = [(dy — gayn) I, () — EduJ, g (B)] X
X [(dev + gie) N, (85) — 6EdolN, ., (€E)] —
— [(dw — gws) N, (B) — EdiNV,; (BN X

X [(dev + goey1) J, (€8) — ebda . (E)]. #.2)

Inverse transformation from @y gives us $x(y, 7).

In this case, the integrand is a single-valued function of p with
poles at p = 0 and p = py; = £r2/m2y,2, in which 1y, denotes the
roots of Ag(§) = 0. If

vy (edigs + dagi) 1—g¥ 41
d1daV® + E1gEYE #1 T s (4.3)

the pole at p = 0 will be simple, since

. i + 3
llﬂ; POx)=1p, fx=th—F— s,
o
L= [a{l & (geeyr — vds) + a{Pe <glylvdl>] )
Iy = [aPe (vdy — guy1) — afl) & (vda + geeyn)] (91/y)"
I3 = (vd1 — guy1)(geeyr — vda) €7 - (giyr -+ vdi)(geey1 + vdo) €”.

In this case, (4.3) is always obeyed, since ¢ > 1 and ¥ >0, while the
conditions dj >0 and gj >0 have been given in section 1. Note that
condition (3.5) may be obtained by passing to the limit in (4.3).

We substitute (4.2) into the inverse transformation and use the sub-
traction theorem to get, for the case of simple roots £xp,

Ouls W) =lat Xl Gty (€ u9/n) +
n=l1
+ Dy N, (€4l exp (__%g_’f)

B (v, 1) = fr* + D) [Crd Eptlon) +

n=l1

2
+ Dy, (Eppifn)] exp (—”—3) 4.4)

meyy?
where the constants Cgp and Dgp (k = 1,2,...) are defined by

2

(1 - y
Crp = —r—{aV [~ det?, N, (¢5, )+

in

+ (dav - gy N, (e5,)] -+ aie [dE, N, &)+

+ (—dwv + g N, (€)1

2y
Dkn ; Al {a:2> & [_ dl;’}: n']v 1 (E}m) +

hn

e —gu) T, (G ) ot (st T, (85, —
—(dv - gz, (88,010,

+ ., dlAR(E)]
p kel

Bin=2 dp p=p =
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= [(dv? — gy — diER,) T, By + 81718 b (Bp)I X
X [(dav + geeyn) N, (€5, ) —dae’) N, (85, )] +
+[(dv — gy — diEZ Y N (§y,) + 8198, N yyg ()] X
X[—{dzv + gaen) J, (85,,)) + dagly, g (85,0 +
H(d2v? +- gogyv — de8%EL,) T, (86 Y —gayie®, T, (85, )X
X[(—dw + g} Ny (&) + dify Ny ()1 +
+[(dav? +geeyrv— doe®E ), (86, ) — gane®E N, (88, )IX
X [(dv— gy} T, (B} — 18y T g (Bp)ls
while ff, Cf , Df, are )derlved respectively, from fy, Cyp, Dyp by

replacmg the ag) by b(]
We substitute (3.6) and (4.4) into (1.4) to get 9(y, ¢, T) as

=04 31 {1y 30 103, (B /90 +
T=) n=L

- gknzr
+ Danv (Eakny / yl)] exp oy } cos (vop) +-

+ 2 {0+ D10, B 90 +

k=1 n=1

— By
DV, (G [ 9] exp 2L sin (v, (4.5)
From (4.5) we readily get the steady-state temperature distribution
as

oo oo
By, 9, ) =9 + 3 fcos(vg) + 3 f,* sin (vg).
k=0 k=1
From (4.5) we also get as a special case the solution for axially

symmetric boundary conditions at the surfaces y = y; and y = y,.
Here it is sufficient to take the term k = 0 in (4.5). Then we have

B, D =0"+fo+ 2 [Coplo(Epny/yn) +

n=1

+ Dy Vo (g y / y1)] eXP f o

which agrees with the known solution [1].

§. As solution (4.5) to (1.1) is obtained formally by term-by-term
differentiation (twice with respect to y and twice with respect to @) of
the series in (1.4), we need to demonsurate uniform convergence of
the following series in the regiony, 2y 2y, 2r= ¢ 20, 7 > 0:

2 b By
! —
Si=2) ay-’ 2:2 q,a'
k=0 k=0
0%y 6 v
k K
8= 2 2 By Si= 2 B ®-1)
k=0 n=1 }_on—l
Uy, = [}, €08 (vo), (5.2)

=[C, 7, ( an 7//3/1) + Dkn (Ekn y/ydix

knvy
—En T )
Xexp Ry cns (V). (5.3)

From (5.2) we get

v (W MY g 1 P, (5.4)
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1 1 y \v2
O _ ~ (v+2) 3— ( __) (....) —
M, 70 [s -1 v\

— 1t (1 -+ %) (lyl-)‘%] cos (V§p), (5.5)
el 2 -

el 3

9
Mk( )

)v+2] cos (V). (®.6)

te]ﬁ

g1yt 1?/1

gi= e, = ER

5okd, Q=pHt—pie™
=14 E{(VRT&),

in which E(...) denotes the integer part of (..
k >kg. Then it is readily shown that

.). We have v > 1 for all

[V <e, | MP <o

¢ 3 (dz -+ ng}]]) g?

_ 3(d1 -+ giyr) €2
T oddwn(ef—1)

= d]dgyl (82 —_— 1).

Then the majorant series of (5.4) will be

Ri v(lak(l)[c’+lak<2)lc”). G.7

Now ai(1> and af(l) are the Fourier coefficients of the given bound-
ary functions Fy and F,. If these periodic boundary functions are con-
tinuous, together with their derivatives up to order s (s > 2), it is
readily seen that the majorants of (5.7) converge, and hence that the
series of (5.4) converges uniformly.

The most unfavorable case as regards uniform convergence in (5.4)
occurs when Fy and F, are not continuous, although they satisfy the
Dirichlet conditions. Then we can only say that the a&l) andak for
large k will be infinitely small quantities of order not less than 1/k;
but this is insufficient for convergence of the majorants of (5.7). If
this approximation is impossible, we are forced to accept uniform
conveigence of (§.4) only within the regiony, >y >y;.

Consider the region oz Z y = oy, where az <y;, o3 >yi.

Let ¥ > 1 denote the value of v that for all v > v* provides simul~
tanecusly

(/92 2<v, (n/o)PKV (s> ).

Then we may show that

IMk(1)| PO -s l (2) < e" —d (k>ko),
This is sufficient for convergence of the majorants of (5.7), and
hence for uniform convergence of (5.4), within the regiony; >y >y;.

If in (5.4) we use the following in place of (5.5) and (5.6),
(1)=___yll:—v ¥ ot .y_lv]
e L

120 <= [ (] (2 e

Y2

we get series S, of (5.1), and the proof of uniform convergence for
this in no way differs from the above proof for §;.
Consider the double series S; of (5.1). We set

2 I+ :
=2l e, () + ;—n N, (ekn) | %

["VZ——V yi?
X 2
b Y

) I, Gl 90+ g~ Fyi1 Bray / yl):i

+ [dzs‘]v-{-l (eBxn) —
Vi— v y,2
A ( g, v 1),
2818 5n
Mk“>=J+E"{[d1NM<am>+ TN, (e | %

Vi 2
% [( ey :’-/12 -
‘ikn ¥

+

+—7, <e&;m>]

Ny Gt/ ?/1)]}

1) T, Gany /91 +
@%Jm (Ekny/yl):l +
+ l:— levH_ (Exn) — ‘!’——JV <Ekn>] X

gkn
VvZ—w yi? y
XK g2 712“_1) N, Gt /91) + g, Vs (it y/y»]}

(A= A/ 8n+0).
The result is

% I Vkn .

T
- (axVME® + P M @) exp “E cos (vy).

As v increases without limit, the roots Exp of Ap(&) = 0 increase at
‘least as c;v, with ¢; >0 [5]; also, using the limiting relations

lim | Vad, @) <Yas > lim [ Ve, @)

it may be shown that

. 8dzy1
lim | MM < 22—y { 1o
Jbw | My 7 Veors (L e (e,
_8digys

Jim | ¢, | < —ppa (e (e,
i.e., ask increases without limit, the coefficients a(l)M(“ +
+ a(z) M(kz) of S; are not merely bounded but also tend to zero at

least as 1/k. Then it is obvious that it is sufficient to demonstrate
convergence of the majorants

oo [ee)
Z 2 exp "62(/? +2n)21:
Tk’ et mYy

in order to demonstrate uniform convergence of S;.

Here we should note that the roots £y of Ag(£) = 0 increase at least
as ¢(k + n), with ¢ >0 [56], as k or n increases without limit.

Uniform convergence of the double series S, may be demonstrated
similarly.

The above proofs of uniform convergence for the series of (5.1) ap-
ply also to the series S} derived from Sj by replacing fi, Ckn» Dkns
cos (v¢), respectively, by

f1* Cyme Dyme sin(ve).

This completes the proof of uniform convergence for the series in
(4.5).

After this paper had been accepted, Cinelli's paper [6] came to my
notice, in which the finite Hankel transform with respect to the spa-
tial coordinates is used to consider a problem analogous to the one
solved here via the Laplace integral transform with respect to the time
coordinate.
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